
Fluid Simulation
Rudolf Ortner

Johannes Kepler University
Linz, Austria

Figure 1: Great fluid simulation examples by ILM [8]

ABSTRACT
Fluid simulation becomes more and more important especially in
visual effects. Since the field is very broad we decided to write this
paper as a small introduction to computational fluid dynamics and
its methods.

CCS CONCEPTS
• Computing methodologies→ Physical simulation.

KEYWORDS
fluid simulation, overview

1 INTRODUCTION
The area of computational fluid dynamics is huge. Many different
approaches have been developed and a lot of them can be combined
to form newmethods.Wewould like to show the underlying physics
of every fluid simulation and the basic methodologies that all other
inventions build upon.

2 WHAT IS A FLUID?
In physics when we talk about fluids we can either mean gases
or liquids. This is because many physical laws apply to both of
them and only differ in there influence and small nuances. This is
an important fact because of their similarities many algorithmic
approaches and data-structures for simulating them are shared

Figure 2: Simulation of the flow of water in a pipe [1].

beyond those. Nevertheless this presentation focuses primarily on
liquid simulations.

3 WHY FLUID SIMULATION?
Now we want to point out some areas in which fluid simulations in
general are used a lot. Only one aspect of it is its usage in the field
of engineering. In the development phase of expensive and compli-
cated products, often simulations are used to check if everything
performs as it should. As we can see in figure 2 their CFD simulator
visualizes the flow of liquid with simple stream lines. In this use

Seminar in Pervasive Computing, 25.11.2020, Linz, AT Rudolf Ortner

case that is totally fine because full liquid surface reconstructions
are mostly not required.
And of course the biggest area of them all, at least in our humble
opinion, is the one of visual effects (VFX). Today, the demand on re-
alistic looking fluid simulations is rising and also the requirements.
Simulations have to be more realistic, last longer and contain much
bigger scenes than 10 years ago. As the examples in figure 1 from
Industrial Light & Magic (ILM) show, huge regions of water have
to be simulated. In this image from Pacific Rim for example, you
can see highly detailed waves with splashes and foam on them. All
in all, their visual effects look great!

4 THE PHYSICS
The underlying formulas for all compressible and viscous fluids are
the so called Navier-Stokes equations. As one can see, these are
quite complicated and difficult to solve for an exact solution. These
formulas contains various kinds of values.

𝜌 ·
(
𝜕𝑢
𝜕𝑡 + 𝑢 · ∇𝑢

)
= −∇𝑝 + ∇ ·

{
𝜇

(
∇𝑢 + (∇𝑢)𝑇 − 2

3 (∇ · 𝑢)𝐼
)
+ 𝜁 (∇ · 𝑢) 𝐼

}
𝜌 · 𝑔 (1)

To make the simulation process easier, often the so called Euler
formula is used. These formula does not have the viscosity term
in it and has a second condition which makes the formula hold
for incompressible fluids. As we are going to examine liquid simu-
lations in this talk, this is no problem because liquids are almost
incompressible. We want to pronounce here the word “almost“. If
liquids were totally incompressible, then we wouldn’t be able to
hear anything below water, because sound moves as small changes
in pressure.

𝜕𝑢

𝜕𝑡
+ 𝑢 · ∇𝑢 = − 1

𝜌
∇𝑝 + 𝑔 (2)

∇ · 𝑢 = 0 (3)

5 METHOD OVERVIEW
Now lets have a look at some existing simulation methods. At
first let’s discuss the two viewpoints. The Eulerian viewpoint and
the Lagrangian viewpoint. Image you are a particle with some
temperature T that moves through the air. In the Lagrangian you
always look at your temperature that does not change. In a Eulerian
point of view, you look at the temperature at a certain point in space.
So when the air moves past, then also the temperature changes,
even if the temperature of every single particle is constant.
These two viewpoints allow us to reformulate the Navier-Stokes
equations for different use cases. This brings us to the two main
method types, grid based methods and particle based methods. In
general, grid based methods are more accurate but also harder to
program. On the other hand, particle based methods might be easier
to implement but are often not that accurate.
That brings us to hybrid methods which mainly boil down to the
Particle-in-Cell method or the Fluid Implicit Particle method, which
we will discuss later.

5.1 Grid Based Simulations
5.1.1 From Reality to Simulation. Now let’s start with grid based
simulations. At first we have to somehow go from reality to sim-
ulation. In the computer it is impossible, to perform a continuous

Figure 3: Visualization of a MAC grid cell [2].

simulation. Therefore we have to discretize time. We do this with
so called CFL condition.

Δ𝑡 =
Δℎ

®𝑢max
(4)

Put simply, we don’t want any quantity 𝑞 in the grid to move farther
than the width of one grid cell per time step. To ensure this we
divide the cell width by the maximum velocity that exists in the
field to retrieve the size of our time step. As mentioned previously,
in visual effects time often matters a lot. That’s why the derived
time step often gets scaled up with a factor to minimize the amount
of time steps we need.

Δ𝑡 = 𝑘𝐶𝐹𝐿 · Δℎ

®𝑢max
(5)

Another improvement was mentioned by Robert Bridson in [3]. His
equation also accounts for body forces that act on the fluid and
might increase the maximum velocity that is currently in the field.

®𝑢max = max(| ®𝑢 |) +
√︃
Δℎ | ®𝑔 | (6)

5.1.2 The MAC-Grid. One important improvement in computa-
tional fluid dynamics was the so called MAC-Grid introduced by
Harlow andWelch in [6]. It is a staggered grid. Staggeredmeans that
the different quantities are stored at distinct positions throughout
the grid. As shown in figure 3, the pressure for example is stored in
the center of the grid cell, also often called voxel. Only the normal
components of the velocity are put at the corresponding face of
the grid cell. This overall structure allows for an accurate central
differences calculation but is not really useful for anything else. It
complicates things quite well because you always have to perform
some interpolation to even get the velocity value at a discrete grid
point!

5.1.3 Operator Splitting. So now let’s look on how to perform the
actual simulation. To integrate over the full Navier-Stokes equation
or even the Euler equation would be way to hard and complicated.
That’s why something called operator splitting is performed. We
divide the original formula into separate parts and solve them one
after each other individually.

Fluid Simulation Seminar in Pervasive Computing, 25.11.2020, Linz, AT

p

Figure 4: Operator Splitting

Figure 5: Diffusion [9]

dertermine Δ𝑡
®𝑢𝐴 = diffuse(®𝑢𝑛,Δ𝑡, ®𝑢𝑛)
®𝑢𝐵 = advect(®𝑢𝑛,Δ𝑡, ®𝑢𝐴)
®𝑢𝐶 = ®𝑢𝐵 + Δ𝑡 · ®𝑔
®𝑢𝑛+1 = project(Δ𝑡, ®𝑢𝐶)

As one can see in the pseudo-code above, each step calculates
the new values for the velocity field and are fed into the next step
until we have the final result of the overall equation. Now let’s have
a look at the different steps.

5.1.4 Diffusion. Diffusion only applies in viscous fluids and de-
scribes the particle movement inside of the fluid due to viscosity.
In general it tries to minimize the differences in velocity of nearby
particles. Generally speaking it is driven by the gradient of con-
centration and can therefore also by applied to head diffusion for
example.

5.1.5 Advection. A very important step in every fluid simulation
is the advection step. In general, advection is the bulk motion of
the substance and its properties. Often semi-Lagrangian advection
is used. It’s called that way, because we think of the process if
there was a particle. Imagine we want to calculate some quantity
for the next time step at position 𝑥𝐺 . To do so, we put a fictional
particle there and ask the question, where was the particle in the
previous time step? So we first calculate the position where the
particle would have been before and use the value at this position.
Of course we will have to interpolate, because this point might not
lie exactly at a grid point.

𝑞𝑛+1𝐺 = interpolate
(
𝑞𝑛, ®𝑥𝑃

)
(7)

To retrieve the previous location of this fictional particle we have to
do some integration. The easiest methodwould be Forward Euler (8).

Figure 6: Semi-Lagrangian Advection

We simply look at the velocity at the current position and calculate
the previous from there.

®𝑥𝑃 = ®𝑥𝐺 − Δ𝑡 · ®𝑢 (®𝑥𝑃) (8)
This method is not very robust and might later lead to artifacts
and an inaccurate simulation. That is why often some more sophis-
ticated methods like Runge-Kutta of higher order are used. Here
we don’t use one single velocity to estimate the previous location.
Instead we go multiple smaller substeps and sample the velocity
field at multiple points to retrieve a better estimation of the result.

5.1.6 Forces. In the next step we apply all our body forces to the
velocity field. This often only boils down to gravity being the only
force in the simulation. But with Newtons first law of motion we
could convert any force that acts on the fluid into an acceleration
value. At the end, all accelerations are applied to the velocity field.

®𝑎 =
®𝐹
𝑚

(9)

5.1.7 Pressure Projection. Next comes the pressure projection. In
this step, the new pressure values are calculated for every grid cell.
Our new pressure values have to ensure that the incompressibility
condition is met and the velocity field stays divergence free. It is
called projection, because this is usually donewith a system of linear
equations. These are put into a matrix that forms a transformation.
If we would apply this matrix over and over again, the result would
not change anymore, because we are already divergence free. This
is then called a projection. This step usually takes the most of our
time in the simulation and should therefore be optimized a lot.

5.2 Particle Based Simulation
5.2.1 Smoothed Particle Hydrodynamics. In particle based simula-
tions, the whole data is stored on particles. So each particle itself
contains its values for velocity, pressure or maybe other quantities
like temperature for example. One common method is the so called
Smoothed Particle Hydrodynamics (SPH). This method is often
used because it is easy to implement.
Because we only have a point cloud of particles, we always have

Seminar in Pervasive Computing, 25.11.2020, Linz, AT Rudolf Ortner

Figure 7: Particle Advection

to perform some sophisticated interpolation of these and need to
implement acceleration structures for them. So accuracy might suf-
fer from this. For accurate results a very high number of particles
is needed. These often leads to the same performance as with grid
based approaches.
Another disadvantage is that we don’t want to render a point cloud
in the final output most of the times. So we have to first perform
some preparation for rendering. The simplest option is to map the
particle data onto a discrete grid and perform volume rendering
on this data. The next step would be to use this grid data to con-
struct a mesh from it. This can be done with the marching cubes
algorithm for example. Another possible method is the use of so
called meta-balls.

5.2.2 Particle-in-Cell. Now let’s have a look at a hybrid approach
that should combine the advantages of both worlds. In section 5.1.5
we performed the so called semi-Lagrangian advection where we
always calculated the quantities for a new discrete grid point. This
might not be accurate enough. To perform a more precise advection,
we use particles instead and get achieve a more accurate result, as
depicted in figure 7.
The overall algorithm starts with storing all the quantities in parti-
cles. Then for each time step we transfer the quantities to the grid
and integrate all non-advection terms, as with any other grid based
method. After that we interpolate the results from the grid back to
the particles. Then we perform the particle advection, moving them
according to their new velocity values. Because we perform an
interpolation in every time step there happens a lot of smoothing
with can lead to unwanted results. The next method tackles this
problem.

5.2.3 Fluid Implicit Particle. The Fluid Implicit Particle (FLIP)method
is a variation of the previously discussed PIC method. In PIC we
interpolate the grid data and store it in the particles. This leads to
smoothing. In this method, only the change of the quantities on
the grid are being interpolated and then added to the values stored
in the particles. So interpolation only occurs once and does not
accumulate and smooth the final value. This leads to virtually no

numerical dissipation. The only downside is that this might lead
to noise in the simulation. To circumvent this, we can introduce a
factor that acts like a slider between pure PIC and pure FLIP results.

6 TETRAHEDRAL MESHES
6.1 The Method
Nowwewant to have look at an interesting paper [4]. It usesmeshes
for the simulation process. One cool thing about this method is
that it supports an adaptive simulation. This is very important
nowadays. Image a huge scene with a small boat in the middle of it.
With a convectional uniform grid, you have to calculate everything
and get the same resolution everywhere. But only the boat is our
interesting part where things happen. They also use a staggered
approach meaning that the pressure and other values are stored in
the center of each tetrahedron. Only the normal components of the
velocity are stored at each face.
So now have a look at the actual algorithm. In every step, the
current surface is used to generate a tetrahedral mesh. This is done
with the isosurface stuffing algorithm as we see later. This mesh
is used to perform the actual fluid simulation via semi-Lagrangian
contouring. After all fluid calculations have been done, we use the
newly created surface for our next step. This has the advantage
that here already is a surface that we could render.

6.2 Isosurface Stuffing
Now let’s look at the isosurface stuffing algorithm [7]. Put simply, it
is a very fast and numerically robust algorithm. This is very impor-
tant because especially in finite element methods it is vital to have
a good mesh. Having even a single badly shaped tetrahedron will
cause immense errors. That’s why this algorithm got introduced.
On top of that it is easy to implement. Especially in fluid simulations
when we have to perform computations over and over again, so
it is very important to have a quick algorithm. This can be done
with precomputed stencils like for example in the marching cubes
algorithm. One major drawback of isosurface stuffing is, that it does
not preserve sharp edges. This might be a huge problem in the area
of engineering where you typically have hard-surface structures.
For us in computational fluid dynamics this is no problem as we do
not have any sharp edges in a fluid simulation.

Now let’s have a look at an example. We use the graded version
of the algorithm which uses an octree to help with the construction
of a graded mesh. As one can see in the left part of figure 8, an
octree gets built to assure finer resolution near the surface. Next
we drop all the grid points that are too far away from the surface.
Then we compute the intersection points of the edges that cross
the isosurface. Finally we snap the outside lying points onto the
surface and we are getting a graded tetrahedral mesh.

In figure 9 one can clearly see the graded internal structure of
the generated mesh. The surface has smaller tetrahedrons than the
inside of the mesh.

7 POWER PARTICLES
7.1 What are Power Particles?
Nowwewant to present another approach based on so called power
particles. It combines the advantages of the previous mesh based

Fluid Simulation Seminar in Pervasive Computing, 25.11.2020, Linz, AT

Figure 8: Isosurface Stuffing [7]

Figure 9: Example Mesh [4]

Figure 10: Voronoi Diagram

approach with a particle based simulation. So what are power par-
ticles? Some of you might already have heard of Voronoi diagrams.
Given a set of points in a two dimensional plane, we divide the

Figure 11: Power Diagram [5]

plane into areas such that for every point in that area, the corre-
sponding input point is the closest one. So we partition the plane
according to distances. Power diagrams extend this a little bit by
adding a weight value to each of the input points. As depicted in
figure 11 this weights can be represented as circles. In addition to
that for calculating the partitioning, the square of the distance and
the weights are used as one can see in the following formula.

𝑣𝑖 =
{
𝑥 ∈ Ω | 𝑑 (𝑥, 𝑞𝑖)2 −𝑤𝑖 ≤ 𝑑 (𝑥, 𝑞 𝑗)2 −𝑤 𝑗 ,∀𝑗

}
(10)

So what are power particles then? Instead of two dimensional power
diagrams, we now get volumetric parcels in three dimensions. Each
particle, now called cite, gets a weight that controls the volume
of the power particle. These are then further used for the new
approach.

7.2 The Method
Now let’s look at the basic steps in the algorithm. We first start with
𝑛 cells of volume 𝑉 and mass𝑚. In every simulation step we pro-
ceed as in most other methods. We first update the velocity values,
compute pressure and apply the pressure forces to the velocities
of each particle. Then we advect the particles through space. After
all these steps, we adjust our volumes to ensure incompressibility
of our fluid. This can be done by recalculating the weights of each
particle. One interesting thing about this algorithm is, that it can

Seminar in Pervasive Computing, 25.11.2020, Linz, AT Rudolf Ortner

Figure 12: Power Particle

Figure 13: Simple Fluid Simulation

easily be adjusted to compressible flow. This only requires some
changes in the pressure projection step and the need for updating
the volume of each particle. These new volumes can then be again
adjusted via the weights. So what are the advantages of this ap-
proach? Mainly because we are dealing with volumetric particles,
the algorithm achieves accurate pressure projection. On top of that,
the method can be adapted to also support compressible fluids. And
one very cool addition is the support of multi-phase flows. This
means the algorithm can handle liquids with different densities in
one simulation. Some oil on top of water would be an excellent
example for this.

8 OWN RESEARCH
In the course of our research we also tried to develop our own
very simple fluid solver. In its current state it is only 2D, as Robert

Bridson suggests in his book [3]. This simplifies the development
and makes debugging easier if something is not working. This
would be much more difficult in three dimensions.
We also want to point out, that these red particles that you can
see in figure 13 are not FLIP particles. Those are simply marker
particles to indicate whether a grid cell contains any fluid or not.
This is needed for the pressure projection step to set the values in
the corresponding equations correctly.
We implemented this in Java because this is the language we are
most familiar with. We knew that the pressure projection step is
the most computational intensive task, because of the huge matrix
and the way it gets solved. But the time it takes to simulate only
one second of simulation is currently far too bad. This might be
due to the use of the simple conjugate gradient method to solve
for pressure as well as the use of Java. But it is more likely that the
way we implemented it is not that efficient as well.
In either way we are going to continue our work on it and try to
implement new features. Our next steps are going to concentrate
on level sets and maybe the extension to FLIP. One of the bigger
steps would be to switch entirely to C/C++ for development to
achieve faster simulation times and the compatibility to state of the
art software. Also we would like to see if we could use an octree
data-structure to allow us adaptive simulations which would be
very nice.

REFERENCES
[1] Autodesk. since 1982. . Autodesk. https://www.autodesk.com
[2] C. Braley and A. Sandu. 2009. Fluid Simulation For Computer Graphics: A Tutorial

in Grid Based and Particle Based Methods.
[3] Robert Bridson. 2015. Fluid Simulation for Computer Graphics, Second Edition.

Taylor & Francis. https://books.google.at/books?id=7MySoAEACAAJ
[4] Nuttapong Chentanez, Bryan E. Feldman, François Labelle, James F. O’Brien, and

Jonathan R. Shewchuk. 2007. Liquid Simulation on Lattice-Based Tetrahedral
Meshes. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (San Diego, California) (SCA ’07). Eurographics Association,
Goslar, DEU, 219–228.

[5] Jason Davies. 2020. Power Diagram. https://www.jasondavies.com/power-
diagram/ [Online; accessed 24-November-2020].

[6] Francis H. Harlow and J. Eddie Welch. 1965. Numerical Calculation of Time-
Dependent Viscous Incompressible Flow of Fluid with Free Surface. Physics of
Fluids (1965). https://doi.org/10.1063/1.1761178

[7] François Labelle and Jonathan Richard Shewchuk. 2007. Isosurface Stuffing: Fast
Tetrahedral Meshes with Good Dihedral Angles. ACM Trans. Graph. 26, 3 (July
2007), 57–es. https://doi.org/10.1145/1276377.1276448

[8] Industrial Light & Magic. since 1975. . Industrial Light & Magic. https://www.
ilm.com

[9] Wikipedia contributors. 2020. Diffusion — Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/w/index.php?title=Diffusion&oldid=988462292 [Online;
accessed 24-November-2020].

https://www.autodesk.com
https://books.google.at/books?id=7MySoAEACAAJ
https://www.jasondavies.com/power-diagram/
https://www.jasondavies.com/power-diagram/
https://doi.org/10.1063/1.1761178
https://doi.org/10.1145/1276377.1276448
https://www.ilm.com
https://www.ilm.com
https://en.wikipedia.org/w/index.php?title=Diffusion&oldid=988462292

	Abstract
	1 Introduction
	2 What is a Fluid?
	3 Why Fluid Simulation?
	4 The Physics
	5 Method Overview
	5.1 Grid Based Simulations
	5.2 Particle Based Simulation

	6 Tetrahedral Meshes
	6.1 The Method
	6.2 Isosurface Stuffing

	7 Power Particles
	7.1 What are Power Particles?
	7.2 The Method

	8 Own Research
	References

